Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

M. Sukeri M. Yusof, Bohari M. Yamin* and Mohammad B. Kassim

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

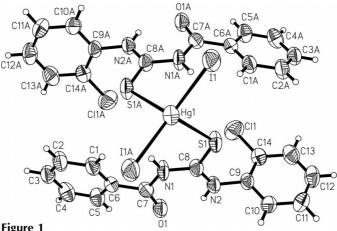
Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.010 \text{ Å}$ R factor = 0.042 wR factor = 0.098Data-to-parameter ratio = 20.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(o-chlorophenylbenzoylthiourea- κS)-diiodomercury(II)


Molecules of the title compound, $[HgI_2(C_{14}H_{11}CIN_2OS)_2]$, are discrete and have crystallographic twofold rotation symmetry, with the Hg atom in a four-coordinate environment. The geometry of the central Hg atom is distorted tetrahedral with bond angles in the range 99.00 (8)–137.56 (3)°.

Received 8 December 2003 Accepted 12 December 2003 Online 19 December 2003

Comment

Several mercury–thiourea complexes reported so far have mainly involved cyclothiourea ligands; examples are $Hg(C_8H_{16}N_4S_2)Cl_2$, $Hg(C_8H_{16}N_4S_2)Br_2$, $Hg(C_8H_{16}N_4S_2)I_2$, $Hg(C_8H_{16}N_4S_2)(SCN)_2$ and $Hg(C_8H_{16}N_4S_2)(CN)_2$ (Popovic *et al.*, 2000). Non-cyclothiourea mercury complexes are relatively scarce and, in fact, bis{ μ -chloro-chloro[(N-diethylaminothiocarbonyl)benzimido-O-methyl ester-S]mercury(II)} was claimed to be the first chloro-bridged mercury–thiourea complex (Lebmann *et al.*, 2000). The title compound, (I), is probably the first mercury complex of a benzoylthiourea derivative and has twofold rotation symmetry.

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The molecule is discrete and centrosymmetric about atom Hg1.

The molecular structure of the title compound, (I), drawn with 50% probability displacement ellipsoids. The suffix A corresponds to symmetry code (i) in Table 1.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The geometry of the Hg atom is distorted tetrahedral, with bond angles ranging from 99.00 (8) to 137.56 (3)°. The Hg–I bond length of 2.6582 (6) Å is slightly shorter than that in the complex Hg(C₈H₁₆N₄S₂)I₂ (Popovic *et al.*, 2000), where the corresponding bond is 2.7123 (5) Å; however, the Hg–S bond length of 2.6840 (16) Å is slightly longer [2.6119 (16) Å]. The structural dimensions of the ligand, in particular the C–S [1.690 (6) Å] and C(S)–N [1.366 (7) and 1.317 (7) Å] bond lengths, are normal and in agreement with values observed in other benzoylthiourea derivatives, such as *N*-benzoyl-*N*′-phenylthiourea [C–S = 1.6567 (15) Å, and C(S)–N = 1.393 (2) and 1.326 (2) Å] (Yamin & Yusof, 2003). The pseudo-six-membered ring (O1/C7/N1/C8/N2/H2A) in the ligand is maintained by the intramolecular interaction N2–H2 $A\cdot\cdot\cdot$ O1 (Table 2).

Experimental

A solution of o-chlorophenylbenzoylthiourea (1.25 g, 4.3 mmol) in ethanol (50 ml) was added dropwise to 50 ml of an ethanol solution containing an equimolar amount of mercury(II) iodide in a two-neck round-bottomed flask. The solution was refluxed for about 2 h. The light-yellow solution was filtered and light-yellow crystals were obtained from the filtrate after evaporation for 3 d.

Crystal data

$[HgI_2(C_{14}H_{11}CIN_2OS)_2]$	$D_x = 2.128 \text{ Mg m}^{-3}$
$M_r = 1035.91$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 3229
a = 20.900 (4) Å	reflections
b = 8.850 (2) Å	$\theta = 2.2 - 27.6^{\circ}$
c = 19.845 (4) Å	$\mu = 7.00 \text{ mm}^{-1}$
$\beta = 118.26 \ (3)^{\circ}$	T = 293 (2) K
$V = 3233.1 (1) \text{ Å}^3$	Slab, light yellow
Z = 4	$0.24 \times 0.11 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-	3734 independent reflections
detector	2980 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.040$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.6^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -21 \rightarrow 27$
$T_{\min} = 0.269, T_{\max} = 0.571$	$k = -10 \rightarrow 11$
10 696 measured reflections	$l = -25 \rightarrow 25$
D. C	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0424P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.7273 <i>P</i>]
$wR(F^2) = 0.098$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3734 reflections	$\Delta \rho_{\text{max}} = 1.33 \text{ e Å}^{-3}$
186 parameters	$\Delta \rho_{\min} = -0.67 \text{ e Å}^{-3}$
H-atom parameters constrained	

 Table 1

 Selected geometric parameters (\mathring{A} , °).

Hg1-I1	2.6582 (6)	O1-C7	1.213 (6)
Hg1-S1	2.6840 (16)	N1-C8	1.366 (7)
S1-C8	1.690(6)	N2-C8	1.317 (7)
Cl1-C14	1.721 (6)		
$I1-Hg1-I1^{i}$	137.56 (3)	$I1^{i}$ -Hg1-S1 i	99.55 (4)
I1-Hg1-S1 ⁱ	107.71 (4)	S1 ⁱ —Hg1—S1	99.00 (8)

Symmetry code: (i) -x, y, $\frac{1}{2} - z$.

 Table 2

 Hydrogen-bonding geometry (\mathring{A} , $^{\circ}$).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N2−H2 <i>A</i> ···O1	0.86	1.93	2.604 (7)	134

After checking their presence in Fourier difference maps, all the H atoms were positioned geometrically and allowed to ride on the parent C or N atoms, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and with $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C~or~N})$. The highest electron-density peak is located at 0.82 Å from I1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Lebmann, F., Beyer, L. & Sieler, J. (2000). *Inorg. Chem. Commun.* **3**, 62–67. Nardelli, M. (1995). *J. Appl. Cryst.* **28**, 659.

Popovic, Z., Pavlovic, G., Calogovic, D. M., Soldin, Z., Rajic, M., Topic, V. & Kovacek, D. (2000). *Inorg. Chim. Acta*, 306, 142–152.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.